Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Conference Poster

Case Studies of CO₂ Capture Retrofitting in Existing Coal-Fired Power Plants

Yongqi Lu¹, Shiaoguo Chen², Massoud Rostam-Abadi^{1,2}, Jose D. Figueroa³

¹ University of Illinois at Urbana Champaign
² Illinois State Geological Survey
³ US DOE/ National Energy Technology Laboratory

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

Introduction

- ☐ US coal-fired power plants total capacity = 300 GW
- □ Coal-fired plants responsible for about 50% of the US total stationary CO₂ emissions.
- Most existing coal-fired power plants will be in operation for several decades.
- ☐ The mono-ethanol-amine (MEA) absorption process is a commercially available technology for CO₂ capture from the PC steam power plant
- □ The MEA process consumes ~30% of electricity output. An auxiliary power generation unit is required to compensate for the electricity loss.

Objective of Case Studies

- Assess the techno-economic performances of MEA retrofitting plants equipped with different auxiliary heat/electricity supply units.
- ☐ Case studies
 - > Different process configurations
 - > Fuel type (gas and coal)
 - > Impact of fuel price
 - > Impact of retrofitting plant scale

Description of Cases for Heat/Electricity Supplement

□ Case A: Coal-fired IP steam boiler + IP turbine

□ Case B: Natural gas (NG) combustion turbine (GC) + NG low

pressure (LP) steam boiler

☐ Case C: Regular coal-fired plant

□ Case C-1: "Purchasing" coal electricity and no auxiliary power unit

☐ Case D: Regular NGCC plant

□ Case D-1: "Purchasing" NG electricity and no auxiliary power unit

Case studies

Case A: Coal-fired IP steam boiler + IP turbine

Supply all steam

Case B: Natural gas (NG) combustion turbine (GC) + NG low pressure (LP) steam boiler

- Supply all steam
- CO₂ from NG combustion not captured

Case C: Regular coal-fired plant

• Supply part of steam (steam supply proportional to the aux. scale)

Case C-1: Purchasing" coal electricity and no auxiliary power unit

- No auxiliary unit on-site
- New coal-fired power plant

Case D: Regular NGCC plant

- Supply no steam, electricity only
- CO₂ from NG combustion not captured

Cooling Boiler steam HP coal steam steam steam **Furbine** Turbin Turbin Tower | steam MEA Flue Unit qas **Electricity** Regional new **Energy MEA+PC** plant Flue gas

Case D-1: Purchasing" NG electricity and no auxiliary power unit

- No auxiliary unit on-site
- New NGCC plant

Methodology

- Process simulation
 - ➤ Chemcad process simulation software employed to perform steadystate simulations for mass and energy balances of the process
 - ➤ Modeling includes combustion, steam cycle, flue gas cleaning, and CO₂ capture for power plant and auxiliary unit
 - ➤ Information related to equipment sizing, commodity consumption, and in-plant power use obtained from the simulation
- Cost modeling
 - ➤ DOE Guideline for Techno-Economic Analysis and EPRI Technical Assessment Guide (TAG) methodology followed
 - Equipment cost scaled from recent DOE, EPRI, EPA studies

Major Assumptions

- Baseline PC Power Plant
 - > PC plant based on single reheat sub-critical steam power cycles
 - ➤ Illinois No.6 coal burned at a 15 vol% excess air
 - ➤ Net electricity efficiency of 37.8%
 - ➤ Electricity output 533 MWe (Gross)
- ☐ Baseline fuel price
 - ➤ Coal = \$30/ton
 - ➤ NG = \$6/mmBTU
- MEA process
 - > Fluor Daniel Econamine FG process
 - Stripping steam extracted from LP turbine at 60 psi
 - ➤ CO₂ capture efficiency of 90%

An Example of Case A: Coal-fired IP steam boiler + IP turbine

Auxiliary power unit

MEA process

Overall perform.	Auxiliary unit	Existing plant
Coal feed, lb/hr	240,888	360,611
Air feed, lb/hr	2,666,121	3,991,198
MEA heat duty, MJ/h	2,461,242	
Steam turbine power generation, MWe	105.4	533.2
CO ₂ compress. and MEA auxiliary, MWe	85.6	
Other auxiliary power, MWe	19.5	34.7
Net electricity, MWe	0.3	498.5
Net efficiency (HHV), %	22.7%	
Net heat rate (HHV), Btu/kWh	15,053	
CO ₂ captured, lb/hr	1,391,627	

Cost	Auxiliary unit	MEA unit
Total plant post (TPC), k\$	309,189	213,134
Total capital requirement (TCR), k\$	356,158	247,028
Levelized capital cost, k\$/y	53,958	37,425
Fixed O&M, k\$/y	18,717	6,879
Variable O&M, k\$/y	28,078	26,379
Total annual cost, k\$/y	100,753	70,683
Net CO2 avoided, k tonne/y	2,320-173 *	
Cost of CO₂ avoidance, \$/tonne	79.84	
Increase of electricity cost, mills/kWh	56.05	

Results of Case Studies

- ☐ Coal-fired Case A, C and C-1
 - Case A is the most expensive
 - ➤ Case C-1 which "purchases" electricity from off-site large plants is the most economical
- □ NG-fired Case B, D and D-1
 - Case B is the most expensive because of lower overall efficiency of energy use
- At prices of \$30/ton coal and \$6/MMBtu NG, retrofitting with NG is more cost effective

Case A: Coal boiler/IP turbine; Case B: NG LP steam boiler + GC turbine; Case C: Coal-fired power plant; Case C-1: "Purchasing" coal electricity; Case D: NGCC plant; Case D-1: "Purchasing" NG electricity

Sensitivity of Fuel Price

- Case A and Case B: If NG price > \$7/MM Btu, Case A is more economically favorable.
- □ Case C and Case D: At NG price > \$10/MMBtu, the coal-fired auxiliary unit and the NG-fired unit have comparable costs.
- □ Case C-1 and Case D-1: At NG price > \$10/MM Btu, the coal-fired Case C-1 is competitive to the NG-fired Case D-1.

- □ Increase of COE for the NG-fired auxiliary unit is lower than its coal-fired counterpart. However, because CO₂ emissions from NG-fired auxiliary unit is not captured, more CO₂ are emitted. If NG-CO₂ is to be captured, its COE will significantly increase.
- ☐ For retrofitting with NG-fired auxiliary units, the O&M cost, mainly due to the NG cost, is a major part of the total cost. As a result, the cost sensitivity to the NG price is much more significant than to the coal price

Sensitivity of Power Plant Scale

- □ CO₂ avoidance cost increases with decreasing percentage of flue gas treatment in all cases
- □ Cases B and D are less sensitive to the scale than Cases A and C. Because flue gas from NG-fired Cases B and D is not treated for CO₂ capture, the impact of the MEA plant scale for Cases B and D is less than the coal-fired cases.

- Almost linear decrease of the electricity cost with CO₂ capture scale
- □ At NG price of \$6/MMBtu, Case D has lower CO₂ avoidance cost than its coal counterpart Case C for different scales examined. At NG price of \$10/MMBtu, and when only a fraction of the flue gas is treated, the costs in Case D are still lower than those in Case C.

Summary

- ☐ Installing an auxiliary power unit to provide steam required by MEA regeneration (Case A and Case B) is neither energy-efficient nor economic
- □ An auxiliary unit employing a standard coal-fired PC or NGCC plant (Case C and Case D) can improve the overall economics of CO₂ capture. Part of steam required for MEA regeneration needs be drawn from the existing power plant.
- ☐ The most economic option is to build new large power plants to offset the electricity loss in regional retrofitting without building small auxiliary power units on individual retrofitting sites (cases C-1 and Case D-1).
- Overall, if the NG price > \$9-10/MM Btu, and the coal price is at \$30/ton, retrofitting with coal-fired auxiliary units could be economically competitive to NG-fired auxiliary units.
- □ CO₂ capture for NG combustion was not included in this study. However, capturing CO₂ from NG combustion is more expensive than the CO₂ from coal combustion.
- Reducing the volume of the flue gas to be treated from 100% to 25% will increase the CO₂ avoidance cost by 10-45%, depending on the retrofitting configuration.